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panel B). We performed C. burnetii–
specific qPCR on the ticks; 14 (88%) 
were positive. 

We genotyped C. burnetii–positive 
DNA from the feces and from 6 of the 
16 ticks by using multispacer sequence 
typing as described (5). All samples 
were identified as MST17, the unique 
genotype circulating in Cayenne (5).

After obtaining the laboratory re-
sults, we confirmed that a local group in 
charge of the collection and treatment 
of injured animals usually released 
rehabilitated 3-toed sloths into Tiger 
Camp. Residents of Tiger Camp regu-
larly observed and came into contact 
with the sloths, and ticks were frequent-
ly observed on the fur of the animals. 
Furthermore, 3 Q fever patients from 
Cayenne reported contact with sloths.

Feces from the sloth in this study 
were highly infectious for C. burnetii. 
Because sloths live in tall trees and can 
shed this bacterium in their feces, human 
contamination might occur through in-
halation of infectious aerosols from fe-
ces. The high prevalence of C. burnetii 
infection in ticks also suggests possible 
transmission through tick bites or from 
aerosols of tick feces that have been de-
posited on the skin of animal hosts; such 
feces can be extremely rich in bacteria 
and highly infectious (10).

In this 2013 outbreak of Q fever, 
epidemiologic studies led to the iden-
tification of 3-toed sloths as a putative 
source of C. burnetii infection. Further 
investigations are needed to confirm 
the role of sloths as a reservoir for C. 
burnetii in French Guiana and to im-
plement efficient measures to prevent 
transmission to humans.
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Marburgvirus  
Resurgence in  
Kitaka Mine  

Bat Population  
after Extermination  
Attempts, Uganda

To the Editor: Marburg virus 
(MARV) and Ravn virus (RAVV), 
collectively called marburgviruses, 
cause Marburg hemorrhagic fever 
(MHF) in humans. In July 2007, 4 cas-
es of MHF (1 fatal) occurred in miners 
at Kitaka Mine in southern Uganda. 
Later, MHF occurred in 2 tourists who 
visited Python Cave, ≈50 km from 
Kitaka Mine. One of the tourists was 
from the United States (December 
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2007) and 1 was from the Netherlands 
(July 2008); 1 case was fatal (1,2,3). 
The cave and the mine each contained 
40,000–100,000 Rousettus aegyptia-
cus bats (Egyptian fruit bats).

Longitudinal investigations of 
the outbreaks at both locations were 
initiated by the Viral Special Patho-
gens Branch of the Centers for Dis-
ease Control and Prevention (CDC, 
Atlanta, GA, USA, and Entebbe, 
Uganda) in collaboration with the 
Uganda Wildlife Authority (UWA) 
and the Uganda Virus Research In-
stitute (UVRI). During these stud-
ies, genetically diverse MARVs and 
RAVVs were isolated directly from 
bat tissues, and infection levels of the 
2 viruses were found to increase in ju-
venile bats on a predictable bi-annual 
basis (4,5). However, investigations at 
Kitaka Mine were stopped when the 
miners exterminated the bat colony by 
restricting egress from the cave with 
papyrus reed barriers and then entan-
gling the bats in fishing nets draped 
over the exits. The trapping continued 
for weeks, and the entrances were then 
sealed with sticks and plastic. These 
depopulation efforts were documented 
by researchers from UVRI, the CDC, 
the National Institute of Communi-
cable Diseases (Sandringham, South 
Africa), and UWA during site visits 
to Kitaka Mine (online Technical Ap-
pendix Figure, http://wwwnc.cdc.gov/
EID/article/20/8/14-0696-Techapp1.
pdf). In August 2008, thousands of 
dead bats were found piled in the for-
est, and by November 2008, there was 
no evidence of bats living in the mine; 
whether 100% extermination was 
achieved is unknown. CDC, UVRI, 
and UWA recommended against ex-
termination, believing that any results 
would be temporary and that such ef-
forts could exacerbate the problem if 
bat exclusion methods were not com-
plete and permanent (6,7).

In October 2012, the most recent 
known marburgvirus outbreak was de-
tected in Ibanda, a town in southwest 
Uganda. Ibanda is ≈20 km from the 

Kitaka Mine and is the urban center 
that serves smaller communities in 
the Kitaka area. This MHF outbreak 
was the largest in Ugandan history: 15 
laboratory-confirmed cases occurred 
(8). In November 2012, an ecologic 
investigation of the greater Ibanda/
Kitaka area was initiated. The inves-
tigation included interviews with lo-
cal authorities to locate all known 
R. aegyptiacus colonies in the area. 
Although minor colonies of small in-
sectivorous bats were found, the only 
identifiable colony of R. aegyptiacus 
bats was found inside the re-opened 
Kitaka Mine, albeit at much reduced 
size, perhaps 1%–5% of that found be-
fore depopulation efforts.

To determine whether the R. ae-
gyptiacus bats that had repopulated 
Kitaka Mine were actively infected 
with marburgviruses, we tested 400 
bats by using previously described 
methods (4,5). Viral RNA was extract-
ed from ≈100 mg of liver and spleen 
tissue by using the MagMAX Total 
Nucleic Acid Isolation Kit (Applied 
Biosystems, Foster City, CA, USA) 
according to the manufacturer’s rec-
ommended protocol. The Fisher ex-
act test was conducted by using IBM 
SPSS Statistics, version 19.0 (IBM 
Corp., Armonk, NY, USA).

Of the 400 R. aegyptiacus bats 
collected, 53 (13.3%) were positive 
for marburgvirus RNA by quan-
titative reverse transcription PCR 
(32/233 [13.7%] adults and 21/167 
[12.6%] juveniles; online Technical 
Appendix Table); marburgvirus was 
isolated from tissue samples from 
9 of the 400 bats. The overall level 
of active infection was significantly 
higher than that found in Kitaka Mine 
during 2007–2008 (5.1%) (5) (Fisher 
exact test, p<0.001) and in other stud-
ies in Uganda (Python Cave [2.5%]) 
and Gabon (4.8%) (4,9). The reason 
for the increase is not clear, but it may 
be related to the effects of the exter-
mination and subsequent repopula-
tion. Increases in disease prevalence 
in wildlife populations after culling  

are not unprecedented (6,7). We 
speculate that after the depopulation 
attempt, a pool of susceptible bats be-
came established over time and was 
subjected to multiple marburgvirus 
introductions, as evidenced by the 
genetic diversity of viruses isolated 
from the bats (Figure). A pool of sus-
ceptible bats would have led to higher 
levels of active infection within the 
colony, thereby increasing the poten-
tial for virus spillover into the human 
population. A significant sex and age 
bias was not detected with respect to 
active infection during the breeding 
season (Fisher exact test, p>0.5 for 
both), and overall, the presence of vi-
rus-specific IgG among the bats was 
16.5%, a finding consistent with that 
in previous studies (4,5).

Phylogenetic analysis of viral 
RNA genome fragment sequences in 
this study showed high marburgvirus 
genetic diversity, including the pres-
ence of RAVVs and MARVs. Se-
quences for isolates from 3 bats were 
nearly identical to those of the MARV 
isolates obtained from patients in the 
2012 Ibanda outbreak (8), suggesting 
that bats from Kitaka Mine were a 
likely source of the virus.
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Figure. Phylogeny of concatenated 
marburgvirus nucleoprotein (NP) and 
viral protein 35 (VP35) gene fragments 
as determined by using the maximum-
likelihood method. Sequences from the NP 
(289–372 nt) and VP35 (203–213 nt) genes 
were amplified and determined from viral 
RNA and then sequenced as described 
elsewhere (4). Sequence names in boldface 
represent those generated from samples 
collected from bats during the November 
2012 outbreak investigation at Kitaka Mine, 
Uganda. Underlined sequence names 
represent those generated from samples 
obtained from marburgvirus-infected 
persons in Kabale and Ibanda, Uganda, 
in 2012. Multiple sequence alignments 
were generated, and a maximum-likelihood 
analysis was conducted on concatenated 
NP and VP35 (208–580 nt) sequences by 
using the PhyML method in conjunction 
with the GTR+I+G nucleotide substitution 
model implemented in SeaView version 
4.2.12 (10). NP and VP35 gene sequences 
determined from samples in this study (in 
boldface) were submitted to GenBank 
(accession nos. KJ747211–KJ747234 
and KJ747235–KJ747253, respectively). 
Bayesian posterior probabilities above 
50 are shown at the nodes. Scale bar 
indicates nucleotide substitutions per site. 
Ang, Angola; DRC, Democratic Republic of 
Congo; Gab, Gabon; Ger, Germany; Ken, 
Kenya; Net, Netherlands; Rav, Ravn virus; 
Uga, Uganda; Zim, Zimbabwe.
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Detection of  
Measles Virus  

Genotype B3, India

To the Editor: Molecular epide-
miologic investigations and virologic 
surveillance contribute notably to the 
control and prevention of measles 
(1). Nearly half of measles-related 
deaths worldwide occur in India, 
yet virologic surveillance data are 
incomplete for many regions of the 
country (2,3). Previous studies have 
documented the presence of measles 
virus genotypes D4, D7, and D8 in 
India, and genotypes D5, D9, D11, 
H1, and G3 have been detected in 
neighboring countries (3,4).

Kerala, India’s southernmost 
state, has high measles vaccination 
coverage compared with many other 
states in the country; however, the dis-
ease is still endemic in the region. Two 
districts, Thiruvananthapuram and 
Malappuram, report the highest num-
bers of cases (5). Baseline data on cir-
culating measles virus genotypes are 
needed for measles elimination, but 
such data are not available for Kerala. 
In this context, we performed a pilot 
genetic analysis of the measles virus 
strains circulating in Thiruvanantha-
puram, the capital of Kerala. We used 
throat and nasopharyngeal swab and 
serum samples from children admit-
ted to Sree Avittom Thirunal Hospital 
during measles outbreaks occurring 
March–August 2012. 

We used the Vero/human-SLAM 
cell line (http://www.phe-culture 
collections.org.uk). for isolation of 
measles virus from throat and naso-
pharyngeal swab samples. For sero-
logic confirmation of cases, we used 
a commercial measles IgM ELISA 
kit (IBL International GmbH, Ham-
burg, Germany). Virus genotyping 
was based on the 450-nt coding se-
quence for the carboxyl terminus of 
nucleoprotein (N) of measles virus, 
as recommended by the World Health 
Organization (3,6). We extracted  

RNA from the samples using TRIzol 
reagent (GIBCO-BRL, Grand Island, 
NY, USA). We performed reverse 
transcription PCR using a Super-
Script One-Step RT-PCR kit with a 
Platinum Taq system (Invitrogen, 
Carlsbad, CA, USA) and previously 
described primers (3,6). Amplicons 
were subjected to bidirectional se-
quencing using a BigDye Terminator 
v3.1 cycle sequencing kit (Applied 
Biosystems, Foster City, CA, USA). 
We edited and aligned nucleotide se-
quences using Bio Edit 7.1.11 soft-
ware (7). Phylogenetic analysis was 
performed by using the maximum-
likelihood method implemented in 
the MEGA5 program (8) to compare 
the determined N gene sequences 
with the World Health Organization 
reference sequences of the 24 known 
measles genotypes.

PCR products could be amplified 
from 16 of the 24 samples analyzed. 
Ten samples provided high quality 
sequence reads for the N gene coding 
region, which were used for further 
analysis. Clinical and demographic 
data for these 10 cases, virus isolation 
status, and GenBank accession num-
bers of the sequences are summarized 
in the Table. 

Phylogenetic analysis revealed 
1 of the 10 measles virus strains to 
be of genotype D8 (online Technical 
Appendix Figure 1, http://wwwnc. 
cdc.gov/EID/article/20/10/13-0742-
Techapp1.pdf), a genotype previ-
ously found to be circulating in 
Kerala and in other regions of India 
(3,6,9,10). The other 9 virus strains 
were closely related to B3 genotype 
reference strains, indicating circu-
lation of the B3 genotype in Kerala 
(online Technical Appendix Figure 
1). The nucleotide sequences of 7 of 
the 9 strains were identical, indicat-
ing a single chain of transmission. 
The remaining 2 samples showed 
sequence divergence, indicating in-
dependent sources of infection. In a 
phylogenetic analysis comparing the 
Kerala B3 genotypes and a dataset of 


